On the self-dual maximal Cohen-Macaulay modules

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Cohen-macaulay Modules over Hypersurface Rings

This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.

متن کامل

RESULTS ON ALMOST COHEN-MACAULAY MODULES

Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.

متن کامل

Liaison with Cohen–Macaulay modules

We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.

متن کامل

ON THE EXISTENCE OF MAXIMAL COHEN-MACAULAY MODULES OVER p th ROOT EXTENSIONS

Let S be an unramified regular local ring having mixed characteristic p > 0 and R the integral closure of S in a pth root extension of its quotient field. We show that R admits a finite, birational module M such that depth(M) = dim(R). In other words, R admits a maximal Cohen-Macaulay module.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1996

ISSN: 0022-4049

DOI: 10.1016/0022-4049(95)00013-5